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Abstract: The last decade has seen the development of a family of powerful optimisation 
algorithms inspired by the foraging behaviours of honey bees. A key component of these 
algorithms is the concept of ‘recruitment’ whereby successful foragers transmit information to 
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number of additional features, including individual sensory ‘perception’, ‘noisy’ recruitment, and 
‘private information’ (memory). In this study, we develop a series of algorithms which embed 
these features and assess the impact of each on the effectiveness of the resulting search 
performance on a series of benchmark problems representing differing resource landscapes. The 
simulation results support findings from the empirical study of real-world honey bees that 
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plays an important role. This finding is relevant for the design of honey bee optimisation 
algorithms. 
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1 Introduction 

A substantial literature has developed in the area of swarm 
intelligence since the 1990s (Bonabeau et al., 1999; Dorigo, 
1992). This literature seeks to gain understanding about the 
mechanisms by which order and problem solving 
behaviours can emerge in societies of agents, when 
decision-making is decentralised and the result of a  
bottom-up rather than a top-down process. An example of 
this is provided by the activities of many species of ants and 
bees which exhibit remarkable ability to coordinate their 

activities in a bottom-up manner. One particular behaviour 
in both families of insects that has attracted much study is 
that of food-foraging. 

Foraging is obviously an important activity for all 
organisms and its organisation can range from solitary 
foraging, where an individual forages on its own, to social 
foraging where foraging is a group behaviour. The essence 
of social foraging is that there must be some communication 
between organisms. Communication about resource finds 
may take place between individuals, via environment 
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marking, or via a broadcast mechanism at a communal nest 
or hive (Sumpter and Brannstrom, 2008). 

The observation that foraging requires organisms to 
undertake a search process has in turn led to the design of 
several families of search algorithms which draw 
metaphorical inspiration from a range of real-world foraging 
behaviours. These include ant colony optimisation 
algorithms (Bonabeau et al., 1999; Dorigo, 1992; Dorigo 
and DiCaro, 1999; Dorigo et al., 1996; Dorigo and Stützle, 
2004) and honey bee algorithms (Bansal et al., 2013; Chong 
et al., 2006; Nakrani and Tovey, 2004; Karaboga, 2005; 
Pham et al., 2006; Yang, 2005). 

In the case of both ant and honey bee foraging, several 
species of the insects are central place foragers in that they 
return to a colony or hive in order to store food. Therefore, 
they can interact with colony members and potentially pass 
on information about food finds. A notable aspect of their 
interaction is that successful foragers seek to recruit other 
conspecifics to food resources that they have found. This 
social transmission of information is emphasised in the 
majority of search algorithms inspired by foraging 
processes. However, real-world foraging processes are 
multi-layered and embed a variety of mechanisms including 
perception, memory and errorful learning from conspecifics. 

In this paper, we describe some features of real-world 
honey bee foraging which have not attracted explicit 
attention in previous work on the design of honey bee 
algorithms and seek to determine the impact of each of these 
features on search performance using a series of benchmark 
optimisation problems. 

The remainder of this contribution is organised as 
follows. Section 2 provides some background on honey bee 
behaviours and provides a synopsis of some recent 
developments in our understanding of these behaviours. 
Section 3 describes the experiments undertaken in this 
study. The results are presented and discussed in Section 4 
and finally, conclusions and opportunities for future work 
are discussed in Section 5. 

2 Background 

European honey bees (Apis mellifera) are one of the  
most-studied branches of the insect family. Just as in the 
case of certain species of ants, their ability to self-organise 
in complex ways has long attracted the attention of 
researchers who have examined the mechanisms of 
communication in honey bee societies. Apis mellifera 
exhibit a symbolic system of communication based on  
the performance of a dance to transmit information on 
(amongst other things) the location and quality of resources 
in the vicinity of their hive. The dance language of  
these honey bees is remarkably complex and was first 
decoded by Karl von Frisch who was subsequently  
awarded the Nobel Prize for physiology and medicine in 
1973 for this work. 

2.1 The honey bee recruitment dance 

Foraging activities of bees involve searching for exploitable 
resources such as pollen (a source of protein), water, waxy 
materials for hive building, and nectar from flowers. Nectar, 
a source of carbohydrate, is converted by bees into honey. 
When a scout or explorer bee discovers a food source of 
sufficient quality she may undertake a dance on its return to 
the hive once she has unloaded her nectar. The objective of 
the dance is to recruit other foragers who will travel to the 
food source and exploit it. In turn, the newly-recruited bees 
may also undertake a dance when they return to the hive if 
the food resource is of sufficient quality. 

The dance language consists of repetitive patterned 
movements that are intended to communicate information 
about the location and desirability of the food source. In 
essence, the dance can be considered as a re-enactment of 
the flight from the hive to the location of interest. The dance 
is undertaken in a specific location of the hive near the 
entrance called the dance floor. The dance floor consists of 
a vertical comb in the hive and typically this area of the hive 
contains multiple potential foraging recruits. The dance is 
social in that it is never undertaken without an audience 
(Crist, 2004). 

The nature of the dance movements depends on the 
location of the food source relative to the hive. If the food 
source is close-by (up to about 100 metres from the hive), 
the bees undertake round dances with circular movements 
predominating. If the food source is further away a waggle 
dance resembling a figure eight is undertaken. The direction 
to the resource (relative to the sun) is indicated by the 
angling of the bee’s body during the dance. The desirability 
of the location is communicated by the dance’s liveliness or 
enthusiasm, with more desirable locations corresponding to 
livelier dances (Seeley et al., 2000). The duration of the 
waggle portion of the dance is a proxy for the distance to the 
location of further away food sources. 

At any point in time there may be several bees dancing 
on the dance floor, hence, the hive can simultaneously 
harvest several food sources. This permits quick adaptation 
by the bee colony in the event that a particular food resource 
becomes exhausted and therefore needs to be abandoned. 
Recruited foragers tend to travel to richer food sources in 
greater numbers as dances for high-quality food sources 
tend to be more conspicuous and longer, thereby creating a 
positive feedback loop resulting in the amplification of the 
exploitation of those food sources. The above description of 
foraging behaviour is stylised and omits aspects of the 
recruitment process such as the role of odours and sounds. 
Readers requiring detail on these aspects are referred to 
Seeley (1995), Tereshko and Lee (2002), and von Frisch 
(1967). 

It is noted that like ant-colonies, decision making by bee 
colonies, is decentralised and parallel. However, there are 
notable distinctions between the information-sharing 
mechanisms of ants and those of bees. Communication 
between ants is primarily indirect and is based on stigmergy. 
In contrast, the honey bee dance language enables bees to 
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engage in direct communication whereby information is 
symbolically broadcast to peers by means of a dance. 

2.2 Bee nest site selection 

Another example of cooperative problem solving via 
recruitment by honey bees is provided by nest site selection. 
Typically, in late spring or early summer as a colony 
outgrows its current hive, the colony will fission or ‘divide’ 
whereby the queen bee and about half of the population of 
worker bees will leave the hive and seek to establish a 
colony at a new nest-site, leaving behind a young queen bee 
and the remainder of the worker bees in the existing hive. 
Having left the current hive, the swarm usually do not fly 
far and within about 20 minutes they form a football-sized 
cluster of bees, often on the branch of a tree (Beekman  
et al., 2006). From this location, scout bees begin a search 
for a new nest site. 

During the site selection process, scout bees leave the 
cluster and search for a new nest site. As potential nest sites 
of satisfactory quality are uncovered, the returning scout 
bees communicate their location to other scout bees by 
doing a waggle dance on the surface of the swarm. The 
length of the dance depends on the quality of the site found, 
with longer dances being undertaken for better-quality sites. 
If a bee finds a good site, it becomes committed to it and 
will visit it several times. However, the length of its 
recruitment dance for the site will decrease after each visit. 
This phenomenon is known as dance attrition (Seeley et al., 
2006). 

The net effect of the recruitment and the dance attrition 
phenomena is that higher-quality sites attract more attention 
from the searching scouts creating a positive reinforcement 
cycle. Dance attrition facilitates the ‘forgetting’ of nest-site 
locations that are not continually reinforced, akin to 
pheromone evaporation in ant-colony foraging. While 
multiple nest-sites (if several of sufficient quality exist) will 
be considered in the early stage of the search process, these 
will be quickly whittled down to a limited number of 
choices from which one is finally chosen. Unlike the 
foraging process whereby several food locations may be 
harvested simultaneously, the nest-site selection problem 
produces a single ‘winner’. 

2.3 Developments in the honey bee literature 

Honey bee foraging behaviours are a rich source of 
inspiration for the design of computational algorithms, and 
are a rapidly growing sub-field of natural computing. In 
most foraging-inspired honey bee algorithms, the core 
concept is that of recruitment, whereby bees which have 
found good food sources recruit conspecifics which travel 
to, and harvest, the food resource (or ‘good’ location on the 
fitness landscape). In order to avoid premature convergence 
and maintain diversity in the search process, ‘forgetting’ 
mechanisms are typically included in algorithmic 
implementations. These can be as simple as the maintenance 
of continual random search by some foragers. 

Whilst the resulting algorithms have proven to be highly 
effective for optimisation, they incorporate a limited number 
of features of the full behavioural repertoire of honey bees. 
These behaviours have been extensively studied in recent 
decades and we now possess a much more comprehensive 
understanding of the foraging process of honey bees. 
Drawing on this literature, three items in particular are 
noteworthy: 

1 individual perception 

2 noisy-recruitment 

3 the role of private information. 

2.3.1 Individual perception 

Honey bees have visual sensory capabilities (Srinivasan  
et al., 1996; Srinivasan, 2010) and were the second 
nonhuman organism (after fish) for which colour vision was 
demonstrated (Srinivasan, 2010). Their visual abilities 
extend beyond recognition of simple patterns, colours or 
shapes, and recent work has shown that their visual  
acuity is even sufficient to distinguish between Monet 
(Impressionist)/Picasso (Cubist) paintings (Wu et al., 2013), 
and between human faces (Dyer et al., 2005). 

Specific features of honey bee vision are described by 
Morawetz and Spaethe (2012). In contrast to bumblebees 
which process information in parallel from a wide visual 
field, honey bees process visual information in a serial-like 
search behaviour, with search terminating the moment the 
first target is uncovered. Honey bees have a smaller visual 
field than bumble bees and hence, their visual search is 
more akin to “moving a small spotlight step by step over the 
search area” [Morawetz and Spaethe, (2012), p.2522]. 
Given these abilities, honey bees are capable of identifying 
promising food sources at a distance and altering their flight 
trajectory to forage at this resource. Individual perception 
has not been explicitly included in honey bee optimisation 
algorithms to date. 

2.3.2 Noisy-recruitment 

A second issue is that the recruitment dances of honey bees 
is much ‘noisier’ in the real-world than is typically 
suggested in honey-bee algorithms. A dancing bee will 
repeat the dance multiple times, sometimes up to 100 times 
(Toufailia et al., 2013), with higher quality sources tending 
to induce more dancing behaviour. Observational evidence 
indicates that repeated dances for a specific resource by the 
same, or by different bees recruiting for the same resource, 
often vary in both directional and distance information 
(Gruter et al., 2013; Toufailia et al., 2013). Hence, dances 
only recruit to an approximation of the location of the food 
resource. Dance followers observe several iterations of the 
dance to compute an average vector with some 5–10 
performances being observed at a minimum. Despite this, 
most recruits have to undertake several trips before finding 
the advertised food source. On average in only some 12% to 
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25% of cases does dance following lead to the discovery of 
the advertised resource (Biesmeijer and Seeley, 2005). 

Counter-intuitively, observational evidence indicates 
that noise concerning the directional component of the 
vector is larger for nearby food sources (within 1 km from 
the nest) than for more distant food locations. The distance 
component of the vector is also noisy with the variance of 
the distance information being scale-invariant (De Marco  
et al., 2008) again indicating greater noise for close-by food 
sources. One possible explanation for this phenomenon is 
that given the typical spatial configuration of bees’ food 
sources (flower clumps in sizeable patches), noisy 
directional information serves to spread recruits over an area 
of food resources rather than recruiting all bees to the exact 
same foraging location which is being harvested by the 
dancing bee. 

A side effect of a noisy recruitment signal is that 
foragers who have been newly recruited to a foraging 
location will not be sure of the exact energy requirements of 
the foraging flight. In the normal course of events, honey 
bee foragers take small amounts of honey from nestmates 
via trophallaxis before leaving the hive in order to provide 
energy (fuel) for their flight. A study by Harano et al. 
(2013) found that dance followers carried a larger amount of 
honey than dancers – but this differential reduced over 
repeated trips to the same food location. This represents a 
physical manifestation of the location uncertainty faced by 
newly-recruited foragers. 

Although, prima facie, a noisy communication 
mechanism would appear sub-optimal, it has been suggested 
that the imprecision in the honey bee dance could in fact be 
adaptive as it would allow for the discovery and exploitation 
of food sources which are nearby to the resource originally 
recruited for (Granovskiy et al., 2012). In essence, it injects 
a stochastic element into the foraging process. 

2.3.3 Private information 

A third issue is that in spite of the importance accorded to 
recruitment in most honey bee algorithms, real-world bees 
place substantial reliance on personal (private) information, 
instead of socially-acquired information from observing a 
dance, when engaging in foraging. Over the foraging 
lifetime of a honey bee (approximately 99.5 +/– 27.3 
foraging trips) only some 25% of foraging flights, on 
average, are preceded by dance observation by a forager 
(Biesmeijer and Seeley, 2005) and in less than half of these 
cases was a bee recruited to a new food source. 

This study also considered whether the recruitment 
propensity was dependent on the level of foraging 
experience of the bee and found that even in the case of 
novice foragers, only about half made use of information 
acquired from a waggle dance rather than searching 
independently. Hence, on most foraging trips, bees rely on 
personal, previously-acquired, knowledge, with even 
inexperienced foragers relying on trial and error learning 
(Gruter et al., 2013; Wray et al., 2012). 

Although experienced foraging bees are infrequently 
recruited to a new source of food, they can make use dance 

information in a number of ways. The information can be 
employed as a ‘confirmation signal’ that the resource they 
are currently harvesting remains profitable. In this case, the 
following bee does not need to collect detailed locational 
information from the dance and typically she only watches 
the dance briefly before departing on a foraging trip. 

The propensity of a bee to use socially-acquired 
information varies depending on context. If the current food 
location that a bee is harvesting becomes unprofitable, the 
forager will ‘retire’ from it and subsequently look for a new 
resource either by trial and error search, or by following a 
dance and being recruited to a new resource location. 
Hence, experienced bees can employ a flexible strategy – 
‘copy if dissatisfied’ – which combines both personal and 
social learning, rather than blindly following recruitment 
dances regardless of feedback to their current behaviour. 
This strategy is relatively simple to implement as it does not 
require complex cognition such as a precise comparison of 
the relative costs and benefits of several alternatives. 

Some forager bees also maintain a memory of old food 
sources which they have previously harvested but from 
which they retired when the source became unprofitable. 
These ‘inspector bees’ continue to make occasional trips to 
the old location to check on its quality and will resume 
foraging at that location if it again becomes profitable 
(Biesmeijer and Seeley, 2005). Route memory information 
to previously harvested resources can be quite persistent and 
allow a foraging bee to return to food locations even after a 
gap of some weeks (Gruter and Ratnieks, 2011). Hence, 
these inspector bees act as short term memory for the bee 
colony and facilitate the quick reactivation of previously 
abandoned food sources. 

2.4 Summary 

From the discussion above, it is evident that the use of 
social and private information is nuanced in real honey bee 
foraging behaviours. The majority of foraging bees at any 
point in time are using private rather than social information 
(Gruter et al., 2013; Wray et al., 2012), indicating that while 
social information is important, it does not have the 
dominant role which it is assigned in most honey bee 
algorithms. This suggests a number of interesting research 
questions, including: 

• What role does individual perception play in the 
foraging process? 

• What is the impact of noisy recruitment? 

• What impact does reliance on private information have 
on the foraging process? 

Addressing these questions could provide some interesting 
insights into the real-world foraging activities of honey bees 
by showing which mechanisms are most important, and 
could also assist in the design of efficient optimisation 
algorithms. These issues can be considered by designing a 
series of algorithms which embed (in turn) a ‘perception’ 
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mechanism, a ‘noisy recruitment’ mechanism, and finally, a 
‘private information’ mechanism. 

3 Model development 

In this section, we describe how each of the three 
mechanisms are implemented in our study. These 
mechanisms are initially implemented individually, and then 
tested in various combinations on the benchmark 
optimisation problems. 

3.1 Perception 

In implementing this mechanism, we exclude all social 
information and memory. Hence, each foraging flight starts 
with no a priori information as to the location of resources. 
The perception mechanism could be implemented in many 
ways, depending on the behavioural assumptions made. 
Real-world foraging bees engage in serial search and stop as 
soon as a resource of minimal threshold quality is found. In 
this study, we assume that individual bees fly to a random 
point in the search space and forage there. This produces a 
random search process and is used as a benchmark for the 
next two mechanisms. Whilst this may appear to be a very 
simple mechanism, it has been noted that where the range of 
sensory perception in a forager is relatively small compared 
to the size of the search space, perception-driven search 
produces little more than a random search process 
(Viswanathan et al., 2011). 

3.2 Noisy recruitment 

Under noisy recruitment, in each iteration of the algorithm, 
the population is ranked in order of the quality of the 
locations currently being exploited by each bee. The best 
20% of the population recruit follower bees. Each follower 
is then assigned a foraging location which is displaced to a 
random point within a hypersphere around the foraging 
location of their recruiter. The radius of this hypersphere (r) 
is given by 

3.6D

Rr
N

=  (1) 

where D is the dimensionality of the benchmark problem, R 
is the radius of the search space, and N is the population 
size. The constant coefficient is an adjustable parameter. 
Hence, r is scaled appropriately as the benchmark problem 
is altered. 

3.3 Private information 

In the ‘private information’ mechanism, each bee maintains 
a personal memory of the best location she has found to 

date, and subsequently forages at a randomly displaced 
location within a hypersphere surrounding the foraging 
location of their previous best location (as above). If a better 
location is subsequently found, their personal memory is 
updated to the new location. 

3.4 Combinations of mechanisms examined 

A total of seven combinations of these mechanisms of 
honey bee foraging optimisation algorithm (HFOA) are 
examined as described in Table 1. The canonical versions of 
the three mechanisms above are denoted as HFOA1 
(perception only), HFOA2 (noisy recruitment only) and 
HFOA3 (private information only), respectively. We note 
that noisy recruitment and private information are strongly 
exploitative in nature, as they focus search in the region of 
previously found resources. In contrast, perception is 
exploratory in nature, as it is not impacted by the results of 
any previous searches. 

In HFOA12, we combine both individual perception and 
noisy recruitment (perception and social information). In 
this variant, 80% of bees are assumed to rely on individual 
perception, with the remaining 20% of the population being 
recruited as followers of the best-performing bees. The 
recruited bees in each iteration of the algorithm are the 
lowest-ranking 20% of the population in terms of the fitness 
(quality) of their current foraging location and they are 
subject to the noisy recruitment mechanism. 

HFOA13 combines perception and private information 
(perception and personal memory). In this combination, 
20% of the bees use perception, and 80% continue to forage 
in the vicinity of the best location they have found to date. 
The population is ranked in order of fitness at the end of 
each iteration, and the better-performing bees rely on their 
private information in the next iteration 

HFOA23 combines noisy-recruitment and private 
information (social information and personal memory). In 
this combination, 80% rely on private information and 20% 
are recruited as followers in each iteration. As above, the 
poorest-performing bees are recruited. 

HFOA123 combines all three mechanisms (perception, 
social information and personal memory), with 16% of bees 
relying on perception, 20% on recruitment, and 64% on 
private information. 

The proportion of bees allocated to each mechanism in 
HFOA12–HFOA123, are selected subjectively and 
alternative weightings could be applied. However, the 
choice of allocation in HFOA12, HFOA23 and HFOA123 is 
guided by empirical studies which show that honey bees 
observe dances only about 25% of the time before 
undertaking a foraging flight. Hence, the majority of 
foraging flights, even when social information is available, 
rely on private information and/or trial and error learning. 
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Table 1 HFOA algorithm variants 

 HFOA1 HFOA2 HFOA3 HFOA12 HFOA13 HFOA23 HFOA123 

Perception        
Noisy recruitment        
Private information        
Percentage of bees using perception 100% 0 0 80% 20% 0 80%*20% 
Percentage of bees recruited 0 100% 0 20% 0 20% 20% 
Percentage of bees using private information 0 0 100% 0 80% 80% 80%*80% 

 
Algorithm 1 Pseudocode for HFOA123 algorithm 

Randomly locate N foraging bees in the search space; 
Evaluate the fitness of each of these locations; 
Store location of best solution; 
repeat 
 Calculate the fitness of the current location of each bee, 
 and rank the bees according to their fitnesses; 
 Select Precruited percentage of the bees with the lowest 
 fitnesses to forage around the N * Precruited best food 
 locations; each recruiting bee is assigned one follower; 
 for all recruited bees in turn do 
  Randomly choose a location around the assigned 
  food site within the hypersphere with radius r, and 
  the bee will forage there; 
 end 
 Select Pnonpcpt percentage of the unrecruited bees with 
 better fitnesses to forage around their personal best 
 food location (memory); 
 for all non-perception bees in turn do 
  Randomly choose a location around its personal 
  best location within the hypersphere with radius r, 
  and the bee will forage there; 
 end 
 Select Ppcpt percentage of the unrecruited bees to 
 randomly percept in the search space; 
 for all perception bees in turn do 
  Randomly choose a location in the search space, 
  and the bee will forage there; 
 end 
 Update the personal best location; 
 Update location of the best solution if necessary; 
until terminating condition; 
Return best solution found; 

In circumstances where a bee is already harvesting a good 
food resource, they tend to persist with that resource until its 

quality falls below a threshold level. Hence, in HFOA13, we 
allocate the majority of the bees to use of personal memory. 

The pseudocode of the algorithm which includes all 
three mechanisms (HFOA123) is outlined in Algorithm 1. 

4 Results and discussion 

In this section, we describe the experiments undertaken and 
present the results from these experiments. Twelve 
benchmark problems (Table 2), at three levels of 
dimensionality (20, 40 and 60), giving a total of  
36 experiments, were used to assess the developed 
algorithms. In foraging terms, the benchmark problems can 
be considered as representing resource environments with 
differing degrees of resource ‘patchiness’. The aim in all the 
experiments is to find the vector of values which minimises 
the value of the test functions. Hence, we can define the 
fitness of a solution vector as the value of the test function 
at that location, with lower values (in this case, as we are 
minimising) indicating a better quality (or ‘fitter’) solution. 

The first six benchmarks are standard optimisation 
problems. Two of these functions namely, Sphere and 
Rosenbrock, represent unimodal problems; and the other 
four, Ackley, Griewank, Rastrigin and Schwefel, are more 
complex functions which contain multiple local optima. The 
last six benchmarks are variants on the above functions in 
that the global optima are shifted or rotated (shift is given 
by the parameter o, and the parameter M represents an 
orthogonal matrix which is used to rotate the function). The 
net effect of applying these is to move the global optimum 
away from the origin in each case, due to the known issues 
with using standard, benchmark functions (Liang et al., 
2005), such as: 

• many popular benchmark functions are symmetric, and 
hence have the same optimal parameter values for all 
dimensions (for example, a vector of zeros) 

• the global optimum may lie at the centre of the search 
space (this can produce problems if search agents are 
initialised randomly along the range of each 
dimension). 
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Table 2 Optimisation problems 
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These features can sometimes be exploited by algorithms to 
produce an upward bias in reported performance. Hence, 
considering the convention sphere function, 
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the shifted sphere function is given by: 
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Although the focus of this study is not on designing a 
‘better’ optimisation algorithm (rather we wish to better 
understand the relative contribution of the various search 
mechanisms), we provide results from the well-known 
particle swarm optimisation (PSO) algorithm for the same 
set of problems, in order to provide an illustrative 
benchmark for the performance of the various algorithms 
developed. 

4.1 Experimental settings 

Table 3 describes the parameter settings adopted. In each 
experiment, N bees in the case of HFOA1-123, or N 
particles in the case of PSO, are used. We considered two 
values of N, namely 25 and 50 (giving 72 (2*36) 
experiments in total). All reported results are averaged over 
30 runs for each problem and algorithm, and we test the 
statistical significance of all differences in the means using 
a t-test. In all experiments, an equivalent number of function 
evaluations are undertaken in order to ensure a fair 
comparison between the different algorithms. The 
experiments were undertaken on an Intel Core i7  
(2.93 GHz) system with 12 GB RAM. 

Table 3 Parameter settings 

Parameters Values 

Trials 30 
Size of population N = 25, 50 
Dimension of problem D = 20, 40, 60 

 

 



 Examining the role of perception, social and private information in honey bee foraging algorithms 247 

Figure 1 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F1 and F2 (N = 50) for each algorithm variant (see online version for colours) 
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Figure 2 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F3 and F4 (N = 50) for each algorithm variant (see online version for colours) 
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Figure 3 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F5 and F6 (N = 50) for each algorithm variant (see online version for colours) 
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Figure 4 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F7 and F8 (N = 50) for each algorithm variant (see online version for colours) 
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Figure 5 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F9 and F10 (N = 50) for each algorithm variant (see online version for colours) 
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Figure 6 Evolution of benchmark function evaluation value for ‘mean’ (i.e., the best location found in each individual trial, averaged over 
all 30 trials) for functions F11 and F12 (N = 50) for each algorithm variant (see online version for colours) 
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Table 4 Results for functions F1 (left three columns) and F2 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best 7.9800 58.8482 173.0472 463,612 14,746,605 125,676,300
Mean 26.0157 128.9998 295.7869 3,900,768 130,401,236 346,439,302

PSO 

Std. 15.4472 43.6149 58.9272 13,721,198 73,255,362 118,716,027 
Best 0.0157 0.4346 3.8163 96.7029 3,798.2852 258,332 
Mean 0.0278 0.6570 5.9561 572.9255 16,232.0124 786,770 
Std. 0.0079 0.1347 1.2696 845.3591 9,595.2718 378,449 

123
psoH  0.00 0.00 0.00 0.12 0.00 0.00 

123
12H  0.00 0.00 0.00 0.01 0.00 0.00 

123
23H  0.45 0.79 0.76 0.82 0.63 0.41 

HFOA123 

123
13H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.0718 2.1002 19.7364 406.5317 105,325 5,576,346 
Mean 0.1211 3.2682 32.6738 1,010.3170 308,336 10,431,579 
Std. 0.0344 0.7410 6.1932 452.4805 228,208 3,527,660 

12
psoH  0.00 0.00 0.00 0.12 0.00 0.00 

12
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA12 

12
2H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.0122 0.3965 4.1489 110.6861 7,429.0242 337,300 
Mean 0.0293 0.6676 6.0590 622.5741 17,319.0431 872,890 
Std. 0.0077 0.1724 1.3907 868.2932 7,744.1580 425,834 

23
psoH  0.00 0.00 0.00 0.12 0.00 0.00 

23
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA23 

23
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.2601 39.6355 93.8218 3,107.0212 10,269,337 104,888,178 
Mean 1.3433 51.0372 142.3633 85,857.3561 28,541,725 138,103,997 
Std. 0.8678 5.5607 16.9299 72,350.6437 8,048,985 15,483,147 

13
psoH  0.00 0.00 0.00 0.13 0.00 0.00 

13
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA13 

13
3H  0.08 0.00 0.00 0.00 0.00 0.00 

Best 41.4857 150.1741 269.0678 6,815,019 133,041,077 255,582,090 
Mean 56.5087 173.2407 302.7207 34,344,670 186,184,480 392,637,500 
Std. 5.7147 10.7401 13.7622 10,519,554 26,298,696 41,938,730 

1
psoH  0.00 0.00 0.53 0.00 0.00 0.04 

1
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA1 

1
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.6258 46.4622 132.1044 11,570.8979 23,183,466 108,855,594 
Mean 2.3129 60.5898 168.4958 275,705 41,089,201 162,314,515 
Std. 1.1196 6.8598 14.5859 322,108 11,838,721 25,015,337 

2
psoH  0.00 0.00 0.00 0.15 0.00 0.00 

HFOA2 

2
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.2872 40.0317 132.3848 8,308.3104 16,244,203 81,703,246 
Mean 1.7525 60.4401 166.6893 287,917 41,968,517 160,474,859 
Std. 0.9544 8.5872 16.7326 323,575 11,422,752 36,680,524 

HFOA3 

3
psoH  0.00 0.00 0.00 0.15 0.00 0.00 
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Table 5 Results for functions F3 (left three columns) and F4 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best 13.1583 18.1097 20.9116 27.9245 178.9409 777.9257
Mean 17.7009 20.6592 21.1177 82.5563 460.5050 1,081.3291 

PSO 

Std. 2.7661 0.7427 0.0904 47.7512 145.1415 151.3691 
Best 1.4202 4.1139 8.7059 1.0572 2.6195 15.4403 

Mean 2.1231 5.7326 12.7343 1.1012 3.3808 20.6594 
Std. 0.3283 1.1724 2.6508 0.0242 0.4240 3.3894 

123
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

123
12H  0.00 0.00 0.00 0.00 0.00 0.00 

123
23H  0.84 0.58 0.36 0.44 0.92 0.20 

HFOA123 

123
13H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 3.0278 6.5841 14.1055 1.1813 7.4918 71.1612 
Mean 3.5382 10.1791 16.6031 1.3944 12.6905 108.7531 
Std. 0.3075 2.7604 1.3238 0.1095 3.3716 21.0687 

12
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

12
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA12 

12
2H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 1.6410 4.3297 9.1314 1.0538 2.5453 14.8038 
Mean 2.1393 5.9000 13.3654 1.0965 3.3936 22.0845 
Std. 0.2931 1.2032 2.6968 0.0242 0.5846 4.9773 

23
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

23
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA23 

23
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 6.4372 15.8887 17.7776 1.7674 134.6856 378.6470 
Mean 9.2151 17.3825 18.9376 4.7853 179.8782 487.0381 
Std. 1.5283 0.6697 0.3438 1.9208 20.9268 50.1217 

13
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

13
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA13 

13
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 18.0571 19.7685 20.2208 142.7544 509.2849 934.4449 
Mean 19.2454 20.2075 20.4898 193.5474 582.8584 1,046.3057 
Std. 0.2895 0.1520 0.1074 20.1804 32.9719 52.2187 

1
psoH  0.00 0.00 0.00 0.00 0.00 0.23 

1
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA1 

1
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 5.7525 16.8561 18.8042 1.7434 149.2034 443.3706 
Mean 11.2107 18.0306 19.3172 8.0097 206.2267 571.4672 
Std. 2.4401 0.4997 0.2015 3.6460 30.5012 61.9264 

2
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA2 

2
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 6.2550 16.3526 18.7761 3.5506 153.3897 412.7703 
Mean 11.4938 18.1017 19.3288 9.5876 210.0254 567.2142 
Std. 2.1262 0.5950 0.2231 3.7378 27.2512 49.4711 

HFOA3 

3
psoH  0.00 0.00 0.00 0.00 0.00 0.00 
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Table 6 Results for functions F5 (left three columns) and F6 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best 126.8809 441.8865 768.2017 2,954.5444 8,792.3265 14,362.7610
Mean 189.3309 519.2829 880.2417 3,685.7902 10,170.2905 16,730.0840 

PSO 

Std. 24.4953 38.8380 60.9828 318.9380 537.0678 700.2745 
Best 2.5756 41.9951 142.9594 807.9302 3,220.2205 6,525.5732 
Mean 4.7697 54.1434 180.1824 2,036.6886 4,810.0728 8,355.6787 
Std. 1.2255 7.1029 16.8274 510.2760 762.3563 962.4858 

123
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

123
12H  0.00 0.00 0.00 0.06 0.01 0.00 

123
23H  0.92 0.00 0.52 0.03 0.48 0.49 

HFOA123 

123
13H  0.00 0.00 0.00 0.09 0.00 0.00 

Best 8.0406 93.2518 227.4998 1,327.7092 4,031.2199 7,653.6044 
Mean 14.5655 119.5681 286.0803 2,257.9313 5,312.4719 9,456.8859 
Std. 2.7759 15.9073 27.2696 408.2927 806.5628 867.6762 

12
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

12
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA12 

12
2H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 3.1634 44.7158 149.0648 1,600.3065 3,083.9446 6,038.7390 
Mean 4.7409 60.2021 183.0248 2,312.2361 4,947.7597 8,186.0147 
Std. 1.0125 9.6453 17.4333 457.6749 757.3324 948.8448 

23
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

23
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA23 

23
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 30.4592 163.7951 364.9235 1,222.1671 4,348.8223 9,610.7241 
Mean 41.5145 204.9313 422.6800 1,859.7164 5,559.1591 10,746.1472 
Std. 5.4971 15.6158 23.9450 252.1411 459.7526 571.7706 

13
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

13
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA13 

13
3H  0.00 0.05 0.00 0.52 0.07 0.40 

Best 156.2712 465.0008 746.1760 4,281.2210 11,181.2195 17,367.7513 
Mean 194.0410 499.8018 804.9176 4,995.0158 12,034.1978 19,407.7954 
Std. 13.4148 14.0845 21.8305 278.8728 349.4736 502.0749 

1
psoH  0.35 0.01 0.00 0.00 0.00 0.00 

1
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA1 

1
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 32.3377 182.7121 387.5177 621.1851 4,924.6477 9,407.1645 
Mean 47.3489 218.5591 451.5954 1,837.2916 5,894.6220 10,603.5336 
Std. 7.8569 19.6116 27.3821 360.6223 382.5464 596.3492 

2
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA2 

2
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 31.0905 178.1448 409.4850 1,147.5308 4,742.5557 10,087.4225 
Mean 50.4512 213.6301 453.8173 1,905.7916 5,753.9104 10,864.4330 
Std. 7.4756 19.1753 22.8871 307.5824 370.2067 511.6868 

HFOA3 

3
psoH  0.00 0.00 0.00 0.00 0.00 0.00 
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Table 7 Results for functions F7 (left three columns) and F8 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best 2,110.9006 25,462.9793 75,498.4190 159,176,631 5,740,162,399 43,833,683,694
Mean 10,603.1116 75,473.5576 140,351.5558 2,434,098,394 39,881,615,398 106,624,138,962 

PSO 

Std. 9,774.7642 20,955.8415 30,541.6187 3,487,358,785 27,868,706,232 44,719,158,381 
Best –445.1319 –276.5322 4,011.1435 1,932.0086 1,204,014 165,567,551 

Mean –436.9680 33.3043 7,217.1130 8,519.2092 6,719,820 842,984,306 
Std. 3.7472 122.7849 2,083.3755 5,382.8834 4,601,504 433,697,114 

123
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

123
12H  0.00 0.00 0.00 0.00 0.00 0.00 

123
23H  0.24 0.46 0.53 0.99 0.12 0.09 

HFOA123 

123
13H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –423.3875 889.3842 18,322.1382 30,878.3847 26,838,987 3,033,011,058 
Mean –389.9918 2,897.7925 29,585.2187 173,401.0776 320,139,830 5,818,667,452 
Std. 15.9675 1,256.7150 4,720.8602 228,045.9205 226,860,586 1,720,970,567 

12
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

12
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA12 

12
2H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –442.6971 –152.7375 3,034.4764 1,887.5437 1,488,889 251,755,224 
Mean –435.6450 61.0549 7,608.2128 8,511.4050 8,868,983 1,089,929,786 
Std. 4.9036 166.8338 2,770.8777 5,427.6631 5,996,864 679,439,551 

23
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

23
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA23 

23
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –187.0656 26,728.3419 90,032.4255 2,322,082 8,579,314,134 49,760,634,537 
Mean 2,129.2258 45,013.8887 109,802.3124 179,920,914 20,900,833,094 72,024,813,741 
Std. 1,413.4333 8,009.2251 8,553.4358 128,310,886 5,521,338,853 12,214,929,903 

13
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

13
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA13 

13
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best 22,890.3503 85,199.4477 135,811.1990 5,081,937,415 50,481,313,319 95,740,720,772 
Mean 29,016.0357 101,828.8488 175,625.9112 9,275,794,221 64,966,684,899 135,899,052,011 
Std. 3,380.1142 7,027.3520 15,429.9383 2,668,554,157 8,775,335,926 16,443,962,042 

1
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

1
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA1 

1
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –159.8496 27,171.9193 81,884.9283 20,310,740 11,470,787,135 70,299,585,812 
Mean 4,328.8876 54,871.2141 132,750.9940 787,443,974 33,108,568,428 109,718,175,335 
Std. 2,336.3970 9,927.2089 18,795.5413 607,938,994 10,288,815,732 22,176,940,746 

2
psoH  0.00 0.00 0.25 0.01 0.21 0.73 

HFOA2 

2
3H  0.70 0.52 0.56 0.32 0.52 0.21 

Best –221.1827 40,246.0386 91,145.7692 27,519,448 9,925,332,831 48,844,359,824 
Mean 4,108.5589 56,517.4293 130,068.4473 646,239,765 31,312,268,917 102,844,051,680 
Std. 2,210.3463 10,241.0672 16,836.7953 475,009,877 11,373,800,027 20,026,864,695 

HFOA3 

3
psoH  0.00 0.00 0.11 0.00 0.12 0.67 
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Table 8 Results for functions F9 (left three columns) and F10 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best –119.3423 –119.0032 –118.7846 72.0126 1,812.1492 5,368.5261
Mean –119.0968 –118.8190 –118.6971 1,317.2877 4,504.7978 8,391.8754 

PSO 

Std. –119.0968 0.0624 0.0355 741.6712 940.4476 1,635.6794 
Best –119.5421 –118.9679 –118.8364 –178.8512 –174.3960 –163.5678 
Mean –119.1260 –118.8339 –118.7233 –177.0657 –113.9569 78.6223 
Std. 0.1104 0.0495 0.0494 2.2964 59.4873 244.6377 

123
psoH  0.25 0.30 0.02 0.00 0.00 0.00 

123
12H  0.64 0.40 0.91 0.00 0.00 0.00 

123
23H  0.13 0.80 0.99 0.00 0.02 0.31 

HFOA123 

123
13H  0.14 0.29 0.12 0.00 0.00 0.00 

Best –119.3338 –118.9340 –118.8248 –178.7985 –168.9282 –86.7989 
Mean –119.1140 –118.8237 –118.7221 –175.2998 –49.0638 676.7891 
Std. 0.0860 0.0440 0.0412 3.7174 116.1276 681.5311 

12
psoH  0.43 0.73 0.01 0.00 0.00 0.00 

12
1H  0.44 0.29 0.07 0.00 0.00 0.00 

HFOA12 

12
2H  0.37 0.41 0.26 0.00 0.00 0.00 

Best –119.2645 –118.9629 –118.7771 –178.9125 –176.4055 –158.6304 
Mean –119.0895 –118.8304 –118.7233 –178.0174 –135.2982 129.7135 
Std. 0.0703 0.0551 0.0279 0.9018 45.4288 305.6116 

23
psoH  0.71 0.45 0.00 0.00 0.00 0.00 

23
2H  0.60 0.21 0.13 0.00 0.00 0.00 

HFOA23 

23
3H  0.54 0.99 0.26 0.00 0.00 0.00 

Best –119.2523 –118.9181 –118.7968 –171.9703 –28.2328 1,135.8155 
Mean –119.0933 –118.8215 –118.7067 –109.0682 829.1227 2,301.2468 
Std. 0.0519 0.0411 0.0307 63.7647 599.9658 971.7985 

13
psoH  0.84 0.85 0.26 0.00 0.00 0.00 

13
1H  0.86 0.37 0.68 0.00 0.00 0.00 

HFOA13 

13
3H  0.65 0.42 0.45 0.00 0.00 0.00 

Best –119.3487 –118.9719 –118.8304 506.1442 2,155.2874 4,876.5842 
Mean –119.0965 –118.8113 –118.7028 918.4354 3,208.1608 5,927.9785 
Std. 0.0895 0.0470 0.0413 154.0620 366.7085 418.0055 

1
psoH  0.98 0.59 0.56 0.00 0.00 0.00 

1
2H  0.94 0.75 0.41 0.00 0.00 0.00 

HFOA1 

1
3H  0.83 0.11 0.31 0.00 0.00 0.00 

Best –119.1768 –118.9061 –118.7794 –170.1390 136.7807 1,350.7470 
Mean –119.0978 –118.8149 –118.7110 –81.2645 1,317.4547 3,181.6124 
Std. 0.0507 0.0398 0.0347 93.2936 879.1889 1,293.6837 

2
psoH  0.95 0.76 0.13 0.00 0.00 0.00 

HFOA2 

2
3H  0.85 0.16 0.79 0.21 0.94 0.91 

Best –119.3414 –118.9344 –118.7978 –173.7923 220.6589 850.3924 
Mean –119.1009 –118.8304 –118.7135 –56.8271 1,306.9859 3,156.8147 
Std. 0.0752 0.0448 0.0391 120.2365 860.3211 1,291.9427 

HFOA3 

3
psoH  0.84 0.41 0.09 0.00 0.00 0.00 
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Table 9 Results for functions F11 (left three columns) and F12 (right three columns) (N = 50) 

  20D 40D 60D 20D 40D 60D 

Best –180.5801 120.7483 906.1210 10,847 122,080 411,329,808
Mean –122.8302 435.5849 1,211.6267 52,316 331,984 1,301,840 

PSO 

Std. 43.9232 144.9717 167.5247 30,837 163,960 1,054,256 
Best –171.8053 226.6004 794.8756 784 26,422 68,197 

Mean –99.8343 472.7583 1,085.2722 4,429 41,655 103,060 
Std. 41.9081 97.0205 110.6729 2,142 11,207 17,196 

123
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

123
12H  0.00 0.00 0.00 0.00 0.00 0.00 

123
23H  0.00 0.00 0.00 0.33 0.29 0.81 

HFOA123 

123
13H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –164.0436 265.9740 779.2154 1,775 31,149 88,129 
Mean –93.1168 423.4131 975.8545 8,107 57,931 135,173 
Std. 31.3641 90.1987 110.5335 3,307 15,185 27,044 

12
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

12
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA12 

12
2H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –194.9120 394.1739 888.7401 1,001 27,006 60,073 
Mean –30.1095 541.9228 1,138.9803 5,093 44,543 101,895 
Std. 63.1312 78.3011 136.2489 3,083 10,131 20,128 

23
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

23
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA23 

23
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –93.1971 294.8667 973.1546 7,441 51,763 125,451 
Mean –54.9156 432.7575 1,169.1984 14,571 72,304 175,202 
Std. 26.1165 58.5234 87.9053 3,215 8,786 20,512 

13
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

13
1H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA13 

13
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –42.4794 515.3253 1,149.2543 27,317 92,056 233,013 
Mean 32.5078 644.1997 1,283.2124 35,647 132,720 309,197 
Std. 29.2464 57.1423 65.0759 4,794 17,135 37,705 

1
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

1
2H  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA1 

1
3H  0.00 0.00 0.00 0.00 0.00 0.00 

Best –113.9786 475.6374 1060 10,921 46,320 167,197 
Mean 10.4027 709.0625 1,382.7171 19,117 85,973 218,629 
Std. 54.0935 104.4768 120.6309 4,230 13,987 25,165 

2
psoH  0.00 0.00 0.00 0.00 0.00 0.00 

HFOA2 

2
3H  0.00 0.00 0.00 0.78 0.63 0.34 

Best –106.2963 453.1859 951.3757 11,112 64,806 164,006 
Mean 19.4954 620.9922 1,307.3017 18,839 87,465 212,002 
Std. 50.9533 78.1252 156.7817 3,673 10,103 28,388 

HFOA3 

3
psoH  0.00 0.00 0.00 0.00 0.00 0.00 
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4.2 Presentation of results 

Figures 1 to 6 and Tables 4 to 9 present the results from our 
experiments. As the results for the case where N = 25 were 
qualitatively similar to those of N = 50, we only provide the 
results for the latter in order to conserve space. The tables 
show for each algorithm – problem combination, the end of 
run evaluation of each benchmark function at the best 
location (solution vector) found across all 30 runs (‘best’), 
and the evaluation of each benchmark function averaged 
over the best location (solution vector) found on each of the 
30 individual runs (‘mean’), and the associated standard 
deviation over all 30 runs. The figures provide the 
evaluation of each benchmark function at ‘mean’ and 
indicate how this value changes (improves) as the number 
of iterations increases. 

Tables 4 to 9 also present the results from our statistical 
testing of a variety of hypotheses. In all cases, the null 
hypothesis is that there is no difference in performance 
between the algorithms being compared. Hence, low p 
values indicate that the null hypothesis is rejected (a 95% 
level is applied). 

In order to facilitate interpretation of the statistical tests, 
we now outline the notation used. One set of hypotheses 
examine the comparative performance of the HFOA 
variants with the canonical PSO algorithm. The notation 
adopted here is: 

• :i
psoH  where the mean result from HFOAi (i: 1, 2, 3, 

12, 23, 13, 123) is compared with the mean result from 
PSO algorithm (null hypothesis of no difference). 

In all the other hypotheses, we compare two variants of the 
HFOA algorithm. The notation in all of these hypotheses is 
illustrated using the following two examples: 

• 123
23 :H  null hypothesis of no difference between 

HFOA123 algorithm and HFOA23 algorithm 

• 12
2 :H  null hypothesis of no difference between 

HFOA12 algorithm and HFOA2 algorithm. 

4.3 Discussion of results 

Initially, we overview Figures 1 to 6 to get an idea of the 
general trends in the results. Taking a high-level 
perspective, we note that the performance of the HFOA 
variants generally improve as they embed more features, 
with HFOA123 generally performing best, closely followed 
by HFOA23. As would be expected, HFOA1 is typically the 
weakest performer. As the dimensionality of the search 
space increases from 20 to 60, the general ordering of the 
performance of the HFOA variants remains similar, 
although as would be expected, the absolute performance of 
each algorithm variant tends to decrease as the problem 
becomes more difficult. Looking at the results for PSO, the 
performance of the algorithm tends to decrease relative to 
that of the better performing HFOA variants as the 
dimensionality of the problem increases. Difficulties with 
search space scalability in the canonical PSO algorithm are 

well-known, and hence this trend in the results is not 
surprising. Next, we proceed to look at the results in  
Tables 4 to 9 in order to obtain finer detail. 

4.3.1 Perception 

Looking at Tables 4 to 9, it is noted that perception alone 
(HFOA1) does not perform particularly well, in comparison 
with the other HFOA variants. HFOA2 outperforms 
HFOA1 in terms of mean fitness (i.e., mean benchmark 
function evaluation) on 34 of the 36 experiments and the 
difference in the means was statistically significant in all of 
these cases. HFOA3 outperforms HFOA1 in terms of mean 
fitness on 35 of the 36 experiments, and in 32 cases the 
difference is statistically significant. 

The relatively modest performance of HFOA1 vs. that 
of HFOA2 and HFOA3 is not particularly surprising, as 
HFOA1 amounts to random search, with a memory being 
kept of the best location found by any bee in the population. 
It is also notable, that the standard deviation of the results 
obtained by HFOA1 tends to be high, which is again 
unsurprising given the expected variability of results from a 
random search mechanism. 

4.3.2 Social vs. private information 

Comparing the performance of HFOA2 and HFOA3, the 
results produced by each algorithm are qualitatively similar 
over most problems in terms of mean performance, and 
each algorithm produces similar-sized standard deviations. 
In numeric terms, HFOA3 outperforms HFOA2 in terms of 
mean result in 17 cases (in eight cases the difference is 
statistically significant), and HFOA2 outperforms HFOA3 
on the remaining 19 cases (in 13 cases the difference is 
statistically significant). This suggests that use of social 
information very weakly outperforms the use of private 
information. 

4.3.3 Combining perception with social and private 
information 

Considering the combinations of mechanisms, when 
perception is combined with either social information 
(HFOA12) or private information (HFOA13), the 
combination almost always outperformed perception 
(HFOA1) alone. In the case of social information 
(HFOA12), better mean results are obtained on all  
36 experiments, and in 33 of the 36 experiments the 
differences in performance were statistically significant. In 
the case of private information (HFOA13), better results 
were obtained on 35 of the 36 experiments (33 of these 
produced statistically significant results). 

When perception is combined with social information 
(HFOA12), the combination outperforms social information 
(HFOA2) alone in 35 out of 36 experiments (statistically 
significant in 32 of these cases), and the difference is 
statistically significant in most cases. When perception is 
combined with private information (HFOA13), the 
combination outperforms private information (HFOA3) 
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alone in 33 out of 36 experiments (statistically significant in 
29 of these cases). 

The evidence from the above results, suggests that 
combinations of perception and either social or private 
information lead to better search outcomes than reliance on 
only social or private information or perception alone. 

4.3.4 Combining social and private information 

HFOA23 combines both social information and private 
information. The combination outperforms social 
information (HFOA2) alone in 34 out of 36 experiments 
(statistically significant in 32 of these cases). The 
combination outperforms private information (HFOA3) 
alone in 34 out of 36 experiments (one experiment produces 
a tied result) (statistically significant in 33 of these cases). 

These results suggest that a combination of both private 
and social information produces better search outcomes than 
reliance on either mechanism in isolation. 

4.3.5 Combining all three mechanisms 

Next, we consider the performance of the combination of all 
three mechanisms (HFOA123) when compared with  
that of HFOA12, HFOA13 and HFOA23. In the case of 
HFOA12, the results from HFOA123 are better in 34 of  
36 experiments (statistically significant in 30 of these 
cases). In the case of HFOA13, the results from HFOA123 
are better in 34 of 36 experiments (statistically significant in 
31 of these cases). Comparing HFOA123 against HFOA23, 
HFOA123 outperforms HFOA23 in 27 experiments (in only 
four cases is the difference statistically significant), HFOA 
performs best in eight experiments (in only one case is the 
difference statistically significant) and one experiment 
produces a tied result. 

These results suggest that the addition of perception to a 
combination of social and private information produces 
some improvement in performance, but in most cases the 
improvement is too small to be statistically significant. 

4.3.6 Comparison with PSO 

Although the purpose of this paper is primarily to gain 
insight into the relative importance of three mechanisms in 
honey bee foraging, we provide some comparative PSO 
results for the benchmark problems for illustrative purposes. 
Generally, the combined HFOA variants perform better  
than PSO. Considering HFOA123, this algorithm variant 
outperforms PSO on 34 of the 36 experiments (statistically 
significant in 31 of these cases). Qualitatively similar results 
are obtained when PSO is compared with HFOA23 and 
HFOA12. We emphasise that we have not attempted to 
optimally tune the parameters for either the developed 
algorithms nor for PSO and hence these results only indicate 
that the performance of the algorithms studied appears 
reasonably competitive from an optimisation perspective. 

5 Conclusions 

In this study, we draw inspiration from the honey bee 
literature in biology and identify three features of the 
foraging process of honey bees, namely ‘perception’, ‘noisy 
recruitment’, and ‘private information’. We then examine 
the relative importance of each of these mechanisms for the 
foraging process using a series of benchmark problems. Our 
results indicate that both social information and private 
information are important in guiding the search process, in 
contrast to the particular importance accorded to social 
information in existing honey bee algorithms. We also find 
that a combination of these mechanisms produces better 
results than a search process that relies completely on either 
social or private information alone. This underscores the 
importance of memory in the honey bee foraging process. In 
contrast, memoryless individual perception is found to be 
much less effective. Our results suggest that work should be 
undertaken to examine the utility of honey bee algorithms 
which explicitly incorporate private memory, in addition to 
recruitment mechanisms. 

Apart from the contribution of this study to our 
understanding of the importance of specific mechanisms for 
the design of honey bee optimisation algorithms, the results 
of our study also provide simulation support for 
observational studies reported in the honey bee literature 
which indicate that bees do not place complete reliance on 
socially transmitted information when selecting a foraging 
location. To the best of our knowledge, this is the first study 
which demonstrates this. 

A number of avenues for future work are indicated. In 
this study, we have implemented a very basic version of 
perception. A follow on study could operationalise this 
mechanism in more complex ways, for example, allowing a 
serial step by step search process. As with all simulation 
studies, alternative parameter values could be chosen and 
alternative benchmark functions employed. Future work 
could undertake additional study of this matter. It would 
also be interesting to investigate the implications of noisy 
recruitment further. This could be undertaken by 
implementing a variant algorithm which has noiseless 
recruitment and determining the impact of this on search 
effectiveness and efficiency. 
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